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The Existence of a Phase Transition in Classical 
Antiferromagnetic Models 
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For a wide class of antiferromagnetic models we prove the existence of a phase 
transition using an extended Peierls argument, taking into account a result of 
Dobrushin [R. L. Dobrushin, Funct. Anal. Appl. 2:44 (1968); in English, 2:302 
(1968)] for an antiferromagnetic Ising model and the results of Malyshev 
[V. Malyshev, Comm. Math. Phys. 40:75-82 (1975)] for ferromagnetic models 
(such as the anisotropic rotator). In particular we review a result of Fr6hlich, 
Israel, Lieb, and Simon [J. Fr6hlich et al., J. Stat. Phys. 22(3):297-347 (198)] 
obtained when reflection positivity holds. 
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1. GENERAL STRATEGY 

We define a general antiferromagnetic model, which contains, as a particu- 
lar case, a classical antiferromagnetic anisotropic Heisenberg model with an 
external magnetic field. In the set of possible spins in each site we fix two 
particular points (corresponding to spins pointing along the positive and 
negative z axes). In these points we assume some extremality properties for 
the interactions. We take some fixed neighborhoods of these points and 
define a border (block wall) separating the two phases in the lattice. We 
give an "intrinsic" definition and prove the equivalence to Malyshev's (1) 
recursive definition (see Appendix). We can then use Malyshev's estimates 
for the number of possible borders with a given number of sites. 

The probability of each border can be estimated comparing the energy 
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of a set (cluster) of configurations containing the border with the energy of 
the cluster of configurations obtained first by erasing the border. The proof 
of the existence of a phase transition is achieved using standard Peierls 
arguments. 

1.1. Notations. Restrictive Conditions 

Let Z be the group of the integers and T = 7/~ (where u/> 2) the lattice. 
Let S be a compact separable metric space with a nonnegative finite 

measure. 
Let U: S • S ~ R  be a real measurable function such that (1) U(S1,  

$2) = U(S2 ,SO,  V S I , S 2  ~ S, and (2) U is bounded from below. Let 
h : S ~ R be a real measurable function. 

We separate the lattice T into two sublattices R 1 and R 2, in such a way 
that T - -  RI U R 2 and such that for every site of R 1 all its nearest neighbors 
are in R 2 (and conversely). 

To simplify the notations we are going to treat the case v = 2. The 
generalization to v > 2 is trivial. 

We put A = ( t  E T:  It[ = 1} and take as general Hamiltonian 

vv( , . . . .  , 

IV} I vt 

t i--ljEA i= l  t ~ V  i = l  j 
t , , t j ~ V  t ~ O V  

where V = { t I . . . . .  tv} is any finite subset of the lattice T and s i ~ S is the 
spin in site t i E V and {s(t)) is a given configuration outside V. 0 V is the 
set of sites t ~ V such that there exist t' E V and t - t' ~ A. 

The staggered field ~ is given by 

= 2 
i E R  l i E R  2 

and its mean q~ -- @ ) v / [  V] is the staggered field by site, actually the 
difference of magnetization on the sublattices. 

s o E S is a spin value verifying some conditions (it will be fixed from 
now on). 

It is then known by Dobrushin (4) that, under suitable conditions on 
U, there exists at least one Gibbs conditional probability distribution 
associated with the Hamiltonian U v. 

Definition: Admissible Transformation. (~) Let (Xl,Xi, ~ )  and 
(X2, X2, tz2) be two measure spaces. A measurable bijection 1, from X~ to X 2 

will be called admissible if the measure/x~y- ~ is absolutely continuous with 
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respect to 1s and the corresponding Radon-Nykodim derivative satisfies 
the following conditions for some real constants e,, c 2 almost everywhere 
on (X2, ~2,  /s 1 

d( ,o 
0 < e l  ~< d/~2 ~< C 2 (  ~ 

We restrict ourselves to the U and h verifying the following conditions: 
U1 U(sl,s2) is a continuous function with two absolute minimum in 

(s 0, s~) and (s~, So). 
U2 g symmetry: there exists a continuous bijection of S, say, g, 

measure preserving such that 

U2.1 gSo = S'o 
-1 U2.2 g = g 

U2.3 U(gs , ,  gs2) = U(s, ,s2), Vs, ,s 2 E S 

U3: There exist neighborhoods 01 and 0 2 of s o with 0, c 0 2 such that 
/~(0,) > 0 and 0 2 A g0 2 = ~). There exists ~ > 0 such that 

U(s, ,s2) < U(s~ ,s;) - ~, V(s, ,s2) ~ 0, • gO, 

V(S', ,s;) ~ 0 2 • g02 

where A 1 • A 2 stands for the Cartesian product. 
U4: /~(02- 01)> 0 and there exists an admissible transformation X: 

02 -01 ~ A  0 c 01, where A 0 is a Borel set that /z(A0)> 0. X verifies the 
following conditions: 

U4.1: VS 1 E gO, Vs 2 E 0 2 - 0t: U(si ,XS2) < U(S 1 ,$2) -- e 

U4.2: V s , ~ 0 2 - 0 1  Vs 2 ~ g ( 0 2 - 0 1 ) :  

U(XSI, gxgs2) < U(S l ,$2) - s 

RorrlarR 1. Let 2 = gxg : g(02 - 01) ~ g ( 0 0 .  This transformation has 
the same properties as X, but acts in the neighborhoods gO, and g02 of s~3. 

Romark  2. Conditions U3 and U4 make this model antiferromag- 
netic. 

U5: There exists a finite family of sets F, . . . .  , F~ such that/~(Fs) > 0, 
Vi, forming a partition of S - (02 U g02). There exists admissible transfor- 
mations f :F~- ->A s C O1, where A s are the Borel sets such that /~(As)> 0. 
Let us put 

b = m i n  5 ;  ' ~ ;  ' b > 0 .  

In the following ~ plays a similar role to the "interaction magnitude," 
1I] on the Ising model. These conditions are the adaptation of Malyshev's 
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conditions to the ferromagnetic case. Owing to the existence of the mag- 
netic field, we have to introduce a shift for removing a border (following 
Dobrushin (2)); therefore as we must compare the energy variation in some 
remote sites we have to introduce a new condition U6 (easily verified in the 
Heisenberg model). 

U6: There exists d > 0 such that 

U6.1: d = sup [ U(s 1 ,$2) -- U(S 3 ,$4) 1 
SI,S3EOI 

S2, S 4 E gOi 

U6.2: sup U(s~ ,s2) < inf U(s 3 ,s4) + 3 d -  
sl E 0  t s3 ~ 0 i  

s2 @ g01 s4 C01 

H 1: h : S ~ R is a bounded function, i.e., there exists a real number 
Ah such that 

Ah = sup h'(s) - inf h (s) 
s @ S  s E S  

This condition is sufficient to prove the desired result; it means that the 
magnetic field must be bounded in some sense (cf. Ising model, Do- 
brushin(2); see also Ref 6). 

1.2. Theorem 

If U verifies conditions U 1 - U 6  and h verifies condition H 1, and if 
e > Ah, then there exist at least two different Gibbs states for sufficiently 
small temperature T = 1 //3. 

R e m a r k  3. The result (and the proof) extend to noncompletely 
translation invariant models. In fact, it is sufficient to have translation 
invariance in a single lattice axis. In particular, we can handle a "stag- 
gered" field in the other t, - 1 lattice axis. 

Owing to possible nontranslation invariance we prove the result only 
for e > •h. In simpler cases, we can have the result in some less restricted 
regions; for example, for the Ising antiferromagnetic model Dobrushin 
proved the existence of a phase transition when 5h < 2c, choosing shift 
direction in a suitable way (see Ref 2). In Fig. 1 one sketches a staggered 
magnetic field in planes parallel to OXY. We can handle this case if h and 
U are independent of z. Dobrushin shift must be done with fixed X and Y. 

We want to prove that q0 is a discontinuous function of ~/at ~/= 0 in 
the thermodynamic limit and at sufficiently low temperatures. In this limit 
~p is an antisymmetric nondecreasing function of 7, so it suffices to show 
that 

q~ = lim+~(~) > 0 
~/--->0 
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which is certainly the case if we can use special bounda ry  condit ions 
obtaining a lower b o u n d  r > 0 for epv independent  of IV]. 

2 .  P R O O F  O F  T H E  T H E O R E M  

Let us fix a site t o E R] N V (or equivalently a site t~ E R 2 N V). Our  
a im is to prove  that  the probabi l i ty  that  st0 ~ S - gO 1 (or s't0 ~ S -= gO 0 is 
less than 1/2;  in this case using " g  symmet ry"  the theorem follows. 

D e f i n i t i o n :  I n t e r a c t i n g  S i t e s  a n d  S e t s .  W e  say that t 1,t 2 ~ T are 
interacting sites if It1 - t2] = 1. In  a similar way sets T1, T 2 C T will be said 
to be  interacting if there exist interact ing sites t 1 ~ T 1 and  t 2 ~ T 2. 

Definition: d-Connection. An ordered set { q , q , . . . ,  t,} c T is a d 
path connecting t 1 to t~ if [ t , . - t i+ l l  <~ d for i =  1 , 2 , . . . , n - 1 .  A set 
T '  c T is d connected  if for  every t', t" E T '  there exists a d pa th  connect-  
ing t '  to t". 

Definition: A Site, Let A c S be a measurab le  set such tha t /+(A)  
> 0. A site t o E T is said to be an A site of a given configurat ion {s( t ) )  if 
s( to) ~ A. 

Definition, In  a given configuration,  a site t will be called well 
oriented ( W )  (i) if t is a 01 site in R l, or (it) if t is a g01 site in R 2. 

The  sites following neither of these condit ions will be generally called 
bad  oriented. A m o n g  those, the sites t such that  g o s(t) is well oriented, 
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i.e., (i) if t is a g01 site in R 1 , or (ii) if t is a 01 site in R2, will be called very 
bad oriented (B). The bad-oriented sites t not very-bad-oriented will be 
called intermediate (b). 

In the sequel we take only configurations with all sites outside V well 
oriented (boundary conditions). 

Now, with these definitions we shall prove that the probability of a 
bad-oriented site in V is less than 1/2. 

Let t o be a bad-oriented site on V and let R b be the maximal 
1-connected component of bad-oriented-sites (b or B) which contain t o 
(RbC V). T \ R  b is the union of its 1-connected components Ro,R 1, 
. . . .  Rq. The sites of these components interacting with R b are W. Let us 

call R 0 the component which contains T \  V. 

2.1. "Intrinsic" Definition Rb(B ) "outer B border of Rb" 

Rb(B ) is the subset of R b which contains all the sites that can be joined 
to ~ 0  by a 1-path not containing two consecutive B sites. (This definition is 
equivalent to Malyshev's definition of contours; see Refs. 1 and 7 and 
Appendix.) Let us denote by ~ o , ~ i , , . . . ,  ~m those ~ i  which interact 
with Rb(B ) and by Rj,, . . . ,  Rjk the others. We put 

Lemma 1: A Geometric Estimation. <1) "The number of possible 
sets Rb(B ) consisting of exactly l sites does not exceed cl27 t, for some 
constant c." 

Proof. We are going to sketch the nonstandard part of the proof, 
that is, we show that Rb(B ) is ~-  connected. The proof is the same as in 
Ref. 1. 

We remark that simple geometric considerations show that the set Qi 

consisting of the sites of Rb(B ) interacting with a ~ i  is ~-  connected. ( Qi 

can be seen as a closed ~-  path tio, tz,, . . . .  ti, where tb ~ Qi c Rb(B ), and 

tio= ti,.) 
For all pairs of sites m,n ~ Rb(B ) we are going to construct a ,/2 path 

on Rb(B ) (see Fig. 2). The definition of Rb(B ) says that there exists a 
1-path from m (resp. n) to a site ~ (resp. fi) interacting with ~0 .  In these 
paths there are eventually sites belonging to some ~ / ,  say, i~ . . . . .  i k, 
where i I interacts with a tip and i k interacts with a tin a, fl ~ {1,2 . . . . .  l}. 
We have a ~ path belonging to R6(B) if we replace the piece of path 
i l , . . . ,  ik, by tip . . . . .  tiB a subpath of t i , , . . . ,  ti, and therefore avoid- 
ing ~ i -  �9 
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2.2. Probability Estimate of a Given Rb(B ) Containing I Sites 

We are going to define into two steps G 1 and G 2 a transformation 
G = G 1 o G 2 of the configuration space into itself. 

G 1: Dobrushin's Transformation (Shift). Let t ~ T, and let t ~ be the 
site just below t (in some fixed axis). Let t be the site just above t (in the 
same axis). We define G 1 by 

Is (  if t ~ R ~ Gl(s(t))=js(tt~ if t a n d / ' ~  R ~ 

gs(t)  if t E R  ~ and t"~ Rb ~ 

This is a generalization of Dobrushin's transformation to a continuous case 
(compare, for example, with Griffiths(6)). 

Definition. Let A c T; we define ~ v  by 

Y v = ( t E T : ~ E A }  

We know that Rb(B ) = R~\ ([Rb\Rb(B)]  U Rj~ U �9 �9 . U Rjm }. The transfor- 
mation G 1 leads us to take the set 

v 
Rb ( B ) = R : \  ([ Rb \ Rb ( B )] ~_J Rjl U o** ~ Rim } 

Two elementary, but useful in the following, properties of /~b(B) are 
collected in the following lemma: 

Lemma 2. (2.1)/~b(B) has the same number of sites as Rb(B); (2.2) 
In the configuration G 1 o s(t) the/~b(B)'s spins only have types b or W. 

Proof. See Ref 7. �9 

Romark.  It is trivial to see that 

l~b(B ) = ( t  e Rb : ; e  R b ( B ) }  U ( t  e R b ( B ) :  ; e  R o U Ri, U ' ' '  U Rik ) 

G2: Malyshev's Transformation. We are able now to define a second 
transformation G 2 which will take spas  from R 1 ~/~b(B)  to 01 and from 
R 2 N /qb(B) to g0 2 [i.e., making all Rb(B ) spins well oriented] using the 
transformations X, X, and f ,  i = 1 . . . . .  k (these defined in condition U5). 

We define G 2, a transformation of space of configurations into itself 
by (compare with Ref. l) 

f o s ( t )  if t E / ~ b ( B )  
G2o s( t)  = s(t)  if not 
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where f is defined 

f o s(t) = 

a s  

s (  t) if s( t) E O l 

XS(t) if s ( t ) ~ O  2 - 0 ,  

f .o  s(t) if s(t) ~ F,. 

xgs(t) if s(t) E g(O 2 - 01) 

s( t) if s( t) EgO 1 

gxgs(t) if s(t) E g(O 2 -  01) 

g ors( t )  if s(t) E F~ 

gxs(t) if s ( t )  ~ 0 2 - -  01 

and t E R 1 

and t ~ R z 

We have seen that Rb(B ) was separated from its complement in T by two 
kinds of borders: (1) the border separating Rb(B ) from Rb\Rb(B); (2) the 
border separating Rb(B ) from 5~ 0 U ~i ,  U - - -  U ~ ik .  In the first case 
across the border the interactions of (s( t ) )  are B - B  and in the second ease 
B - W  or b-w. 

On the contrary /~b(B) is separated from its complement by the 
following kinds of borders:  (1) the border  separat ing Rb(B ) f rom 
R b \ R b (  B ) V ;  (2) the border separating R b ( B  ) from R 0 U Ril t_l �9 �9 �9 U R i .  
In these two cases across the borders all the interactions of (G  2 o 
G 1 o S(t)} are W - W ,  that is the transformation G = G 2 o G 1 erases the 
border Rb ( B ). 

Let us decompose the set of configurations into several subsets (clus- 
ters). We consider partition J of S with subsets F1,F 2 . . . . .  F k, gO 1, 
g(02 - 01), 02 - 01, and 01; two configurations (sl( t))  and {s2(t)) belong to 
the same cluster if Vt o E Rb(B), sl(t ) and s2(to) belong to the same element 
of the partition B ~. In this case we write s l ~ s  2. The number  of possible 
clusters does not exceed (k + 3) l, where l is the number  of sites in Rb(B ). 

Estimation of Energy Variation. Let us denote by U s = Uv(s(t O, 
. . . .  S(tv)/(s(t)}  ) the energy of a configuration (s(t)} belonging to a 

given cluster L. In U s we have three terms: a term of internal interaction in 
V; another term between V and T -  V; finally a term involving the 
magnetic field. As we take 77 = 0 there are no other terms. 

Lemma 4. For every configuration (s(t)} with boundary conditions 
as above, we have 

uGs < - - Ahy 

where e and Ah are defined in conditions U 1- U 6 and H 1 . 
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Proos  As we want  an est imate of difference U s -  Uas, it is easy to 
see that  we can replace V by  Rb(B ) in internal and  border  energy of Us and  
V by  /~b(B) in Uc~. By commodi ty  we are going to define a natural  
bijecfion ~ between Rb(B ) and /~b(B) .  Let  us put  

n t i m e s  �9 n t i m e s  

[ " =  [ and  [ ~ =  [ 

N o w  we define ~ :  

t E R b ( B ) ~ / ` E  l~b(B ) 

If there exists n ~ 0 such that  in ~ / ~ b ( B )  then we take the smallest  one, 
n o, and  p u t / ` =  [no If not, we put  t = tm~ where m 0 is the greatest  m such 
that  t m E Rb(B);  this case appears  only if [ E  R 0. For  each t E Rb(B ) we 
take the sum of the four terms U(s ( t ) , s ( t i ) ) , t  i E A + t; we compare  these 
terms with the corresponding terms for t E R b (B).  

1st case: t + A ~ Rb(B ). G o s(t'i) is always W; a s  s(ti) is b or B 
conditions U 3 and  U 4 give 

U ( G o  s(~) ,  G o  s( / ` ) )  < U(s ( t i ) , s ( t ) )  - ,  (*) 

except when~s( t )  and  s(ti) are s imultaneously B; in this case we have 
s(t)  = G o s( t )  and therefore 

V( o s(;), Co s(;i)) = v(s(t),s(t,)) 

However ,  for every t which is a B site, there exists f rom the definit ion of 
Rb(B ) at least a ti ~ t + A, such that  s ( t )  is a b site and  then verifying ( * ). 

Therefore  we have in this case 

~,, U ( G o  s ( / ` ) , G o  s ( ~ ) )  - U( s ( t ) , s ( t i )  ) < - r  (**) 
ti@t+~ 

2nd case: ( t + A )  N [ R b \ R b ( B ) ] : / = O ,  b u t  ( t + A )  N [ R  0 u  Rq U 
�9 �9 �9 U Ri~ ] = ~. In  this case, s(t)  is a B site, as well as s(ti) with t i ~ t 
+ A and t i E Rb \Rb(B  ). The  same reasons as in the first case give (**). 

3rd Case: ( t +  A) n [Rb\Rb(B)] = ~b, but  (t + A) N ( ~ 0  U ~ i ]  U " " " U 
R~k) V ~ ~. If t = t we have  (**) as in the first case�9 If  t i ~ (R  o U �9 �9 �9 U Ri~ ), 
then t i is a w site and  t a B or b site�9 G t ransforms these W - B  or W - b  
interactions in W -  W interactions�9 W e  find again  (*) even i f / ' i n t e rac t s  with 
/~ and  generally 

G o = 

On the contrary,  if / ' ~  [, we know that  s( t )  is b or B; as ? ~  R 0 U 
R~, U �9 �9 �9 U Ri~ we know that  s(t*) is a W site and  f rom condit ions U3 and 
U4 this is the worst  case. As s(t)  and s( t )  are W sites the worst  case 
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appears when all other spins are in B. In these cases, three B - B  interac- 
tions and a W - B  interaction became (via ~ and G transformations) four 
W-  W interactions. Condition U6.~ ensures that we have lost at most d for 
each W - W  interaction; condition U6. 2 ensures a gain of at least e + 3d in 
interaction B - W .  Therefore we find again (**). 

4th case: t + A N [Rb\Rb(B)] ~= dO, and t + A CO (R 0 U ~i ,  U �9 �9 �9 U 
5~ik ):/= ~. This case is treated essentially as the former. We conclude then 
that the first term in (**) is less than - le, i.e., a decrease of e by site. 

To allow for magnetic field terms we must add quantity Ah by site, 
and then we obtain - l(e - Ah) as a majorant of Ua~ - U,. 

Remark  1. If Ah < e the energy decreases. In Ising model we have, 
as similar conditions, ]HI < 4 I f  [, where H is the magnetic field and J -  the 
coupling constant (cf. [6]). 

Remark  2. We are forced to restrict transformations to Rb(B ) be- 
cause to transform all r 0 complement would introduce a volume term in 
the energy estimates due to the existence of magnetic field. 

As g is measure preserving and all other transforms are admissible, the 
l integrations give each one a factor b. Note that not all the transformations 
are measure preserving but the admissibility implies this estimate. Therefore 
we have 

ZL/ZaL < exp{ -- fll(~ -- Ah)}b - '  

Putting together all the estimates we control the probability for t o to be 
a bad-oriented site (b or B). We write these estimates in a schematic way as 
in the usual Peierls argument with the difference that continuous spins 
oblige us to introduce the concept of cluster of configurations. Then we 
have 

P (t is bad-oriented) 

<<. P(to is in some border's interior) 

< ~ P( t  o is interior to a/-sites border) 
l 

< ~ (number of geometric border with/-sites) 
1 

X / P ( e a c h  I sites border) 

<< ~ cl2y l (Number of energy cells: "clusters") 
l 

• P (cell of greater probability) 

< ~. c127'• (k + 3)Zexp{- Bl(e - A h ) } b  z 
l 
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This estimate is uniform in V. Choosing fl sufficiently great (temperature 
sufficiently low), the last term can be as small as we wish, and in particular 
smaller than 1/2 for/3 greater than some tic. This concludes the proof. [] 

. 

and 

HEISENBERG MODEL 

In this model we have 

s =  {s = + y 2  + I) 

u(s, ,s2) = I J  I(z,z2 + ~(.~u~ + y,y2)) 

where ] J [ e  l a and 14 < 1 

h(s) = h.u + h j  + hzz, 

and 

where h = (h. ,hy,hz)  ~ N3; 

�9 t,= ~ z i -  ~ z~ 
i ~ R ]  i E R  2 

U and f verify (see Refs. 1 and 7) conditions U 1- U6 and F1. Then we 
have the following: 

Corollary. The classical Heisenberg antiferromagnetic with arbitrary 
parameter of anisotropy and with magnetic field bounded [hi < [ J  [/2 has 
a phase transition at sufficiently low temperatures. 
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APPENDIX 

Malyshev Definition (inductive), see Ref. 1: Rb(B ) consists of, and only 
of the following sites belonging to Rb: 

1st step: the sites which interact with ~0.  
2nd step: the sites which are not B sites and interacting with at least 

one site of Rb(B ) defined before. 
3rd step: B sites interacting with at least one site of Rb(B ) defined 

earlier, which is not a B site. 
4th step: the sites interacting with those ~ i  which contains at least 

one site interacting with Rb(B ) defined earlier. 
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We return to step 2 and  we cont inue this procedure,  until all the sets 
def ined in all these steps are empty.  

I . e m m a .  Malyshev ' s  border  is equivalent  to the "intr insic" border .  

Proof.  Let X be the Malyshev  border  and  let Y be the "intr insic" 
border .  

(a) t ~ X ~ t ~  Y 

The  sites belonging to X are def ined into four  steps. 
1st step: A site t defined in the first step has trivially a 1-path joining 

it to ~ 0 .  This pa th  has only a site, t. Therefore  there are not  two 
consecutive B sites in this path.  

Fo r  the sites t, defined in steps 2 or 3, it is sufficient to prove  that  if all 
sites defined earlier are connected  to ~ 0  by  a 1-path without  two consecu-  
tive B sites, then the pa th  reunion of ( t )  with this pa th  has the same 
properties.  

2nd step: Sites def ined in this step are b sites interact ing with a site 
that  is connected to ~ 0  by  a 1-path t l , t  2 . . . . .  t n without  two B sites 
consecutive.  Then  the 1-path t, tl, t 2 . . . .  , t n has the same properties.  

3rd step: The sites defined in this step are B, but  they interact  with a 
b site t 1, which is connected  to ~ 0  by  a 1-path t 1, t 2 . . . . .  t n without  two B 
sites consecutive.  Then  the pa th  t, t 1, t 2 . . . .  , tn has the same properties.  

4th step: The sites t defined in this step interact  with a site of a ~ i  ; 
then t is connected  by  a 1-path to a site of Rb(B ) defined earlier and  
therefore connected  to R 0 by  a pa th  with the same properties.  

(b) t E  Y ~ t E X  

Let t~, t 2 . . . .  , tn, t~+l; t ,+ 1 = t be  a 1-path connect ing t to 5~ 0 without  two 
consecutive B sites. The  idea of this p roof  is to verify that  t i E Rb(B ) or to 
some appropr ia te  Rjt~ E X because it interacts with R 0. 

1st ease: We suppose that  there are not  w sites in the path,  i.e., all 
sites are b or B. We  are going to show that  if ti ~ X then ti+ 1 E X and  
therefore t ~ X. If  ti+ 1 is a B site then t, (path condit ion) is b. Therefore  
t~+~ will be  included in Rb(B ) at  the third step consecutive to the t~ 
inclusion. If  t~+ 1 is a b site it will be  included by  the act ion of the second 
step consecutive to the t i inclusion. 

2nd case: There  are W sites in the path.  Let  tj be  the first W site in 
the path.  As ( / ~  R b, w must  belong to some ~ .  The  first case proves  that  
tj_ 1 ~ Rb(B) .  Let t k be the first site after  9 belonging to R b . t k interacts with 
tk - l  E ~ i .  Then  t k ~ X because (4th step) t k interacts with t k_ ~ ~ Ri and  
R i interacts with ~ - l  ~ Rb(B) .  

We achieve the proof  of the l e m m a  al ternat ing these two arguments  
for  sites t~+l, . . . ,  t,. []  
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